loading…

BEZIER(sel)(controlpoints)

Transfinite mapping function of genric degree Bezier curve.

I/O

in

Function selector: domain coordinate selector function.

in

Array v: point of the domain.

out

Number: the selected coordinate.

out

Function: an anonymous function.

in

Array controlpoints: an array of points and curve mapping functions describing curve control points.

out

Function: an anonymous mapping function.

Example

var domain = INTERVALS(1)(32);
var controlpoints = [[-0,0],[1,0],[1,1],[2,1],[3,1]];
var curveMapping = BEZIER(S0)(controlpoints);
var curve = MAP(curveMapping)(domain);
DRAW(curve);
var domain = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]);
var c0 = BEZIER(S0)([[0,0,0],[10,0,0]]);
var c1 = BEZIER(S0)([[0,2,0],[8,3,0],[9,2,0]]);
var c2 = BEZIER(S0)([[0,4,1],[7,5,-1],[8,5,1],[12,4,0]]);
var c3 = BEZIER(S0)([[0,6,0],[9,6,3],[10,6,-1]]);
var out = MAP(BEZIER(S1)([c0,c1,c2,c3]))(domain);
DRAW(out);

BOUNDARY(d)(model)

Get the d-boundary of the model.

I/O

in

Number d: space dimension.

out

plasm.Model: the d-boundary of the model.

Example

var d = 1;
var model = TORUS_SURFACE()();
var boundary = BOUNDARY(d)(model);
DRAW(boundary);

CANCEL(object)

Remove the object from the scene graph.

I/O

in

plasm.Model or plasm.Struct object: the object to cancel.

out

plasm.Model or plasm.Struct object: the cancelled object.

Example

var model = TORUS_SURFACE()();
DRAW(model);
CANCEL(model);

CIRCLE(r)(divs)

Create a circle with radius r, approximated by divs segments.

I/O

in

Number r: the radius of the circle.

out

Function: an anonymous function.

in

Number divs: the number of segments that approximate the circle.

out

plasm.Model: the circle with radius r, approximated by divs segments.

Example

var r = 1.5;
var divs = 32;
var circle = CIRCLE(r)(divs);
DRAW(circle);

CYLINDRICAL_SURFACE(profile)(vector)

Create a specific ruled surface S called cylindrical where the direction of the lines is given by the vector with constant components that is non complanar with the section curve (profile). The profile curve can be a known profile function, like BEZIER, or a custom one.

I/O

in

Function profile: mapping Function of the profile curve.

out

Function: an anonymous function.

in

Array vector: an array of vector costant components.

out

Function: mapping of the profile of the cylindrical surface.

Example

var domain = PROD1x1([INTERVALS(1)(20),INTERVALS(1)(6)]);
var ncpVector = [0,0,1];
var funProfile = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]);
var out = MAP(CYLINDRICAL_SURFACE(funProfile)(ncpVector))(domain);
DRAW(out); 

COLOR(color)(object)

Clone object and color cloned object with color.

I/O

in

Array color: rgba color components (from 0 to 1).

out

Function: an anonymous function.

in

plasm.Model or plasm.Struct object: the object to color.

out

plasm.Model or plasm.Struct: the cloned colored object.

Example

var color = [0.8, 0.4, 0.2, 0.7];
var model = TORUS_SURFACE()();
var coloredModel = COLOR(color)(model);
DRAW(coloredModel);

CONICAL_SURFACE(apex)(profile)

Create a conical surface S between a vertex (apex) and a profile curve. The curve can be a known profile function, like BEZIER, or a custom one.

I/O

in

Array apex: the cone's vertex (an array of coordinates).

out

Function: an anonymous function.

in

Function profile: mapping Function of the profile curve.

out

Function: mapping of the profile of the conical surface.

Example

var domain = PROD1x1([INTERVALS(1)(20),INTERVALS(1)(6)]);
var apex = [0,0,1];
var funProfile = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]);
var out = MAP(CONICAL_SURFACE(apex)(funProfile))(domain);
DRAW(out); 

COONS_PATCH(controlpoints)

Mapping function of a Coons Patch.

I/O

in

Array controlcurves: an array of curves mapping functions describing surface's boundaries

out

Function: an anonymous mapping function.

Example

var dom1D = INTERVALS(1)(32);
var dom2D = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]);

var Su0 = BEZIER(S0)([[0,0,0],[10,0,0]]);
var curve0 = MAP(Su0)(dom1D);
DRAW(curve0);

var Su1 = BEZIER(S0)([[0,10,0],[2.5,10,3],[5,10,-3],[7.5,10,3],[10,10,0]]);
var curve1 = MAP(Su1)(dom1D);
DRAW(curve1);

var control2 = [[0,0,0],[0,0,3],[0,10,3],[0,10,0]];
var Sv0 = BEZIER(S1)(control2);
var curve2 = MAP(BEZIER(S0)(control2))(dom1D);
DRAW(curve2);

var control3 = [[10,0,0],[10,5,3],[10,10,0]];
var Sv1 = BEZIER(S1)(control3);
var curve3 = MAP( BEZIER(S0)(control3))(dom1D);
DRAW(curve3);

var out = MAP(COONS_PATCH([Su0,Su1,Sv0,Sv1]))(dom2D);
DRAW(out);

CUBE(dim)

Create a dim-dimensional cube.

I/O

in

Number dim: dimension of the cube.

out

plasm.Model: a cube with dim dimension.

Example

var dim = 2;
var cube = CUBE(dim);
DRAW(cube);

CUBIC_CARDINAL(domain)

Tranfinite Cubic cardinal splines curve generator function on domain.

I/O

in

plasm.Model domain: domain of the generator function.

out

Function: an anonymous function.

in

Array controlpoints: an array of points and curve mapping functions describing curve control points.

out

plasm.Model: a spline segment.

Example

var domain = INTERVALS(1)(20);
var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]];
var splineCardinal = SPLINE(CUBIC_CARDINAL(domain))(controlpoints);
DRAW(splineCardinal);

CUBIC_HERMITE(selector)(controlpoints)

Transfinite mapping function of cubic Hermite curve.

I/O

in

Function selector: domain coordinate selector function.

in

Array v: point of the domain.

out

Number: the selected coordinate.

out

Function: an anonymous function.

in

Array controlpoints: an array of points and curve mapping functions describing curve control points.

out

Function: an anonymous mapping function.

Example

var domain = INTERVALS(1)(20);
var controlpoints = [[1,0],[1,1],[ -1, 1],[ 1,0]];
var curveMapping = CUBIC_HERMITE(S0)(controlpoints);
var curve = MAP(curveMapping)(domain);
DRAW(curve);
var domain = PROD1x1([INTERVALS(1)(14),INTERVALS(1)(14)]);
var c1 = CUBIC_HERMITE(S0)([[1,0,0],[0,1,0],[0,3,0],[-3,0,0]]);
var c2 = CUBIC_HERMITE(S0)([[0.5,0,0],[0,0.5,0],[0,1,0],[-1,0,0]]);
var sur3 = CUBIC_HERMITE(S1)([c1,c2,[1,1,1],[-1,-1,-1]]);
var out = MAP(sur3)(domain);
DRAW(out);

CUBIC_UBSPLINE(domain)

Tranfinite cubic uniform B-splines curve generator function on domain.

I/O

in

plasm.Model domain: domain of the generator function.

out

Function: an anonymous function.

in

Array controlpoints: an array of points and curve mapping functions describing curve control points.

out

plasm.Model: a spline segment.

Example

var domain = INTERVALS(1)(20);
var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]];
var splineCubic = SPLINE(CUBIC_UBSPLINE(domain))(controlpoints);
DRAW(splineCubic);

CUBOID(dims)

Create a cuboidal simplicial complex with dimensions [dx, dy, dz, ...].

I/O

in

Array dims: sides length for each dimension of the simplicial complex.

out

plasm.Model: a cuboidal simplicial complex with dimensions [dx, dy, dz, ...].

Example

var dx = 1;
var dy = 2;
var dz = 3;

var cuboid1 = CUBOID([dx]);
DRAW(cuboid1);
var cuboid2 = CUBOID([dx, dy]);
DRAW(cuboid2);
var cuboid3 = CUBOID([dx, dy, dz]);
DRAW(cuboid3);

CYL_SURFACE(dims)(divs)

Create a cylindrical surface.

I/O

in

Array dims: dimensions [r, h].

out

Function: an anonymous function.

in

Array divs: divisions [slices, stacks].

  • Number slices: slices (16 by default).
  • Number stacks: stacks (2 by default).

out

plasm.Model: a cylindrical surface with radius r and height h, divided in slices and stacks.

Example

var model = CYLSURFACE()();
DRAW(model);

DISK(r)(divs)

Create a disk surface with radius r.

I/O

in

Number r: the radius (1 by default).

out

Function: an anonymous function.

in

Array divs: divisions [slices, stacks].

  • Number slices: slices (16 by default).
  • Number stacks: stacks (2 by default).

out

plasm.Model: a disk with radius r, divided in slices and stacks.

Example

var model = DISK()();
DRAW(model);

DOMAIN(dims)(divs)

Create a domain.

I/O

in

Array dims: dimensions [dx, dy, dz, ...].

out

Function: an anonymous function.

in

Array divs: divisions [nx, ny, nz, ...].

  • Number nx: division along x axes.
  • Number ny: division along y axes.
  • Number nz: division along z axes.
  • ...

out

plasm.Model: a domain.

Example

var domain1 = DOMAIN([[0,PI])([32]);
DRAW(domain1);
var domain2 = DOMAIN([[0,PI], [0,1]])([32, 2]);
DRAW(domain2);
var domain3 = DOMAIN([[0,PI], [0,1], [0,0.5]])([32, 2, 5]);
DRAW(domain3);

DRAW(object)

Draw an object of 3 or less dimensions.

I/O

in

plasm.Model or plasm.Struct object: the object to draw.

out

plasm.Model or plasm.Struct object: the object drawn.


EXPLODE(values)(model)

Explode a model.

I/O

in

Array values: [dx, dy, dz, ...]

out

Function: an anonimous function.

in

plasm.Model model: the model to explode.

out

plasm.Model: the model exploded.

Example

var model = TORUS_SURFACE()();
var exploded = EXLODE([2,2,2])(model);
DRAW(exploded);

EXTRUDE(hlist)(object)

Extrude an object.

I/O

in

Array hlist

out

Function: an anonimous function.

in

plasm.Model or plasm.Struct objetc: the object to extrude.

out

plasm.Model or plasm.Struct objetc: the extruded object.

Example

var model = SIMPLEX(1);
var extruded = EXTRUDE([1])(model);
DRAW(extruded);

HIDE(object)

Hide the object.

I/O

in

plasm.Model or plasm.Struct objetc: the object to hide.

out

plasm.Model or plasm.Struct: the hidden model.

Example

var model = TORUS_SURFACE()();
DRAW(model);
HIDE(model);

INTERVALS(length)(n)

Create a segment from 0 to length divided in n parts.

I/O

in

Number length: the length of the interval.

out

Function: an anonimous function.

in

Number n: the number of divisions.

out

plasm.Model: a segment from 0 to length divided in n parts.

Example

var intervals = INTERVALS(10)(5);
DRAW(intervals);

K(data)(anydata)

Return object when invoked on anyObject.

I/O

in

Object data: any Object

out

Function: an anonymous function.

in

Object anydata: any Object that will be discarded

out

Function: an anonymous function.

Example

var kContent = 5;
var identityCall = K(kContent);
var newCall = identityCall("plasm");
console.log(kContent === newCall);

MAP(mapping)(domain)

Map a domain by a mapping function.

I/O

in

Function|Array mapping: the mapping function (or array of function)

in

Array v: point of the domain.

out

Array: the mapped point.

out

Function: an anonymous function.

in

plasm.Model domain: the domain to map.

out

plasm.Model: the mapped domain.

Example

var mapping = function (v) { return [v[0] + 1, v[1], v[2]];
var model = TORUS_SURFACE()();
var mapped = MAP(mapping)(model);
DRAW(mapped);
var domain = DOMAIN([[0,1]],[0,2*PI]);
var mapping = function (v) { return [SIN(v[0]), COS(v[1])]; });
var model = MAP(mapping)(domain);
DRAW(model);
var domain = DOMAIN([[0,1]],[0,2*PI]);
var mapping = [
  function (v) { return SIN(v[0]); }, 
  function (v) { return COS(v[1]); }
]);
var model = MAP(mapping)(domain)
DRAW(model);

NUBSLINE(degree)(knots)(controls)

Non-uniform B-Spline.

I/O

in

Number degree: spline degree. Number [totpoints=80]: total number of spline's points.

out

Function: an anonymous function.

in

Array knots: Array of integer describing spline's knots.

out

Function: an anonymous function.

in

Array controls: Array of integer describing spline's control points.

out

plasm.Model: non uniform spline.

Example

var controls = [[0,0],[-1,2],[1,4],[2,3],[1,1],[1,2],[2.5,1],[2.5,3],[4,4],[5,0]];
var knots = [0,0,0,0,1,2,3,4,5,6,7,7,7,7];
var nubspline = NUBSPLINE(3)(knots)(controls);
DRAW(nubspline);

NUBS(sel)(degree)(knots)(controls)

Transfinite Non-uniform B-Spline.

I/O

in

Function sel: selctor function.

out

Function: an anonymous function.

in

Number degree: spline degree.

out

Function: an anonymous function.

in

Array knots: Array of integer describing spline's knots.

out

Function: an anonymous function.

in

Array controls: Array of integer describing spline's control points.

out

plasm.Model: non uniform spline.

Example

var domain = INTERVALS(1)(20);
var controls = [[0,0],[-1,2],[1,4],[2,3],[1,1],[1,2],[2.5,1],[2.5,3],[4,4],[5,0]];
var nubs = NUBS(S0)(3)([0,0,0,0,1,2,3,4,5,6,7,7,7,7])(controls);
var model = MAP(nubs)(domain);
DRAW(model);
var domain = DOMAIN([[0,1],[0,1]])([30,30]);
var b0 = BEZIER(S0)([[0,0,0],[5,-10,0],[10,0,0]]);
var b1 = BEZIER(S0)([[0,2,0],[8,3,0],[9,2,0]]);
var b2 = BEZIER(S0)([[0,4,1],[7,5,-1],[8,5,1],[12,4,0]]);
var b3 = BEZIER(S0)([[0,6,0],[9,6,3],[10,6,-1]]);
var controls = [b0,b1,b2,b3];
var nubs = NUBS(S1)(3)([0,0,0,0,7,7,7,7])(controls);
var model = MAP(nubs)(domain);
DRAW(model);

NURBSLINE(degree)(knots)(controls)

Non-uniform Rational B-Spline.

I/O

in

Number degree: spline degree. Number [totpoints=80]: total number of spline's points.

out

Function: an anonymous function.

in

Array knots: Array of integer describing spline's knots.

out

Function: an anonymous function.

in

Array controls: Array of integer describing spline's control points.

out

plasm.Model: non uniform rational spline.

Example

var _p = Math.sqrt(2)/2.0;
var controls = [[-1,0,1], [-_p,_p,_p], [0,1,1], [_p,_p,_p],[1,0,1], [_p,-_p,_p], [0,-1,1], [-_p,-_p,_p], [-1,0,1]];
var knots = [0,0,0,1,1,2,2,3,3,4,4,4];
var nurbs = NURBSPLINE(2)(knots)(controls);
DRAW(nurbs);

POLYLINE(points)

Create a polyline made by points.

I/O

in

Array points: an array of points ([p0, p1, ...]):

out

plasm.Model: a polyline made by points.

Example

var points = [[0,0], [1,1], [2,0]];
var polyline = POLYLINE(points);
DRAW(polyline);

POLYPOINT(points)

Create a 0D complex.

I/O

in

Array points: an array of points ([p0, p1, ...]):

out

plasm.Model: a polypoint made by points.

Example

var points = [[0,0], [1,1], [2,0]];
var polypoint = POLYPOINT(points);
DRAW(polypoint);

PROD1x1(array)

Return cartesian product of the two models in array.
Each model must have Rn equals to 1.

I/O

in

Array array: an array of the two operand models ([model1, model2]):

out

plasm.Model: result of the product of the two models

Example

var a = POLYLINE([[1],[3],[4]]);
var b = POLYLINE([[2.2],[3.5],[7.8],[9.0]]);
var axb = PROD1x1([a,b]);
DRAW(STRUCT([axb, SKELETON(1)(axb)]));

PROD1x2(array)

Return cartesian product of the two models in array.
The first model must have Rn equals to 1.
The second model must have Rn equals to 2.

I/O

in

Array array: an array of the two operand models ([model1, model2]):

out

plasm.Model: result of the product of the two models

Example

var a = POLYLINE([[1],[3],[4]]);
var b = POLYLINE([[0,2],[1,1],[2,1],[3,0]]);
var axb = PROD1x2([a,b]);
DRAW(STRUCT([axb, SKELETON(1)(axb)]));

PROD2x1(array)

Return cartesian product of the two models in array.
The first model must have Rn equals to 2.
The second model must have Rn equals to 1.

I/O

in

Array array: an array of the two operand models ([model1, model2]):

out

plasm.Model: result of the product of the two models

Example

var a = POLYLINE([[1],[3],[4]]);
var b = POLYLINE([[0,2],[1,1],[2,1],[3,0]]);
var bxa = PROD2x1([b,a]);
DRAW(STRUCT([bxa, SKELETON(1)(bxa)]));

PROFILEPROD_SURFACE(profiles)

Create a surface S mapping as profile product between two plane curves A and B (in profiles)

I/O

in

Array profiles: mapping Function of the two plane curves profile to product.

out

Function: mapping of the profile product surface

Example

var dom1D = INTERVALS(1)(32);
var Su0 = BEZIER(S0)([[0,0,0],[2,0,0],[0,0,4],[1,0,5]]);
var curve0 = MAP(Su0)(dom1D);
DRAW(COLOR([0,0,1])(curve0));

var Su1 = BEZIER(S1)([[0,0,0],[3,-0.5,0],[3,3.5,0],[0,3,0]]);
var Su1Draw = BEZIER(S0)([[0,0,0],[3,-0.5,0],[3,3.5,0],[0,3,0]]);
var curve1 = MAP(Su1Draw)(dom1D);
DRAW(COLOR([1,0,1])(curve1));

var dom2D = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]); // DOMAIN([[0,1],[0,1]])([20,20]);
var out = MAP(PROFILEPROD_SURFACE([Su0,Su1]))(dom2D);
DRAW(out); 

ROTATE(dims)(angle)(object) / R(dims)(angle)(object)

Rotate object by angle on the rotational plane described by dims.

I/O

in

Array dims: an array of Number specifying dimensions forming the rotational plane on which rotate the object.

out

Funciton: an anonymous function.

in

Number angle: rotational angle (in radiant, from 0 to ).

out

Function: an anonymous function.

in

plasm.Model or plasm.Struct object: the object to rotate.

out

plasm.Model or plasm.Struct: the rotated object.

Example

var model = TORUS_SURFACE()();
var rotated = ROTATE([0,1])(PI/3)(model);
DRAW(rotated);

ROTATIONAL_SURFACE(profile)

Create a rotational surface mapping given the mapping of the profile to rotate.

I/O

in

Function profile: mapping of the profile to rotate.

out

Function: mapping of the rotational surface

Example

var domain = DOMAIN([[0,1],[0,2*PI]])([20,20]);
var profile = BEZIER(S0)([[0,0,0],[3,0,3],[3,0,5],[0,0,7]]);
var mapping = ROTATIONAL_SURFACE(profile);
var surface = MAP(mapping)(domain);

RULED_SURFACE(profiles)

Create a ruled surface S mapping between two profile curves A and B (in profiles). The curves can either be a known profile function, like BEZIER, or a custom one (see examples).

I/O

in

Array functions: mapping Function of the two curves.

out

Function: mapping of the profile ruled surface

Example

// Hyperbolic paraboloid
var dom2D = T([0,1])([-1,-1])( PROD1x1([INTERVALS(2)(10),INTERVALS(2)(10)]) );
var funAlfa = function(pt) { return [ pt[0], pt[0], 0 ]; };
var funBeta = function(pt) { return [ 1, -1, pt[0] ]; };
var out = MAP(RULED_SURFACE([funAlfa,funBeta]))(dom2D);
DRAW(out);
// Linear interpolation of curves: surface connecting a Bézier curve and a portion of a circle
var dom2D = PROD1x1([INTERVALS(1)(50),INTERVALS(1)(50)]);
var funAlfa = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]);
var funBeta = function(curveFun) {
  return function(pt) {
      var pAlfa = curveFun(pt);
      return [ COS( PI * (3/2) * pt[0] ) - pAlfa[0], SIN( PI * (3/2) * pt[0] ) - pAlfa[1], 1 - pAlfa[2] ];
  };
};
var out = MAP(RULED_SURFACE([funAlfa,funBeta(funAlfa)]))(dom2D);
DRAW(out);

SCALE(axis)(values)(object) / S(axis)(values)(object)

Scale model by values along axis.

I/O

in

Array axis: axis to scale along.

out

Function: an anonymous function.

in

Array values: scaling factors.

out

Function: an anonymous function.

in

plasm.Model or plasm.Struct object: the object to scale.

out

plasm.Model or plasm.Struct: the scaled object.

Example

var model = TORUS_SURFACE()();
var scaled = SCALE([1,2])([2,0.5])(model);
DRAW(scaled);

SHOW(object)

Show a hidden object.

I/O

in

plasm.Model or plasm.Struct object: the object to show.

out

plasm.Model or plasm.Struct: the shown model.

Example

var model = TORUS_SURFACE()();
DRAW(model);
HIDE(model);
SHOW(model);

SIMPLEX(dim)

Create a dim-dimensional simplex with sides length equal to 1.

I/O

in

Number dim: simplex dimension.

out

plasm.Model: a simplex of dim dim.

Example

var simplex = SIMPLEX(3);
DRAW(simplex);

SIMPLEX_GRID(quotes)

Create a grid simplicial complex.

I/O

in

Array quotes: an array of array of quotes for each dimension of the grid, starting from dimension 0.
Quotes may be both positive and negative:

out

plasm.Model: a grid simplicial complex.

Example

var model = SIMPLEX_GRID([1,-1,1]);
DRAW(model);

SIMPLICIAL_COMPLEX(points)(cells)

Create a simplicial complex.

I/O

in

Array points: an array of points, represented as arrays of coordinates.

out

Function: anonymous function.

in

Array cells: complex's highest order cells represented as arrays of indices of points.

out

plasm.Model: a simplicial complex.

var points = [[0,0],[1,0],[0,1],[1,1],[0.5,1.5]];
var cells = [[0,1,2],[1,3,2],[2,3,4]];
var simplicialComplex = SIMPLICIAL_COMPLEX(points)(cells);
DRAW(simplicialComplex);

SKELETON(dim)(model)

Extract the dim-skeleton of the model.

I/O

in

Number dim: dimension of the skeleton.

out

Function: anonymous function.

in

plasm.Model model: model to which extract skeleton.

out

plasm.Model: dim-skeleton of the model.

Example

var cuboid = CUBOID([1,2,3]);
var skeleton1 = SKELETON(1)(cuboid);
DRAW(skeleton1);

SPLINE(curve)(controlpoints)

Create spline curve.

I/O

in

Function curve: spline curve generator function, such as the result of application of CUBIC_UBSPLINE or CUBIC_CARDINAL to a domain.

out

Function: an anonymous function.

in

Array controlpoints: an array of points and curve mapping functions describing curve control points.

out

plasm.Struct: the spline.

Example

var domain = INTERVALS(1)(20);
var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]];
var splineCardinal = COLOR([1,0,0])(SPLINE(CUBIC_CARDINAL(domain))(controlpoints));
var splineCubic = COLOR([0,1,0])(SPLINE(CUBIC_UBSPLINE(domain))(controlpoints));
var points = SIMPLICIAL_COMPLEX(controlpoints)([[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]]);
var out = STRUCT([splineCardinal,splineCubic,points]);
DRAW(out);

STRUCT(items)

Structure together plasm.Model and plasm.Struct.
If a transformation is encountered in items,
it is applied to all of the following items.

I/O

in

Array items: an array of plasm.Model or plasm.Struct or Function

out

instance of plasm.Struct: a struct.

Example

var cube1 = CUBE(3);
var cube2 = T([0])([1.3])(cube1);
var struct1 = STRUCT([cube1, cube2]);
var t = T([1])([1.3]);
var struct = STRUCT([struct1, t, struct1, t, cube1]);

TORUS_SOLID(dims)(divs)

Create a torus solid.

I/O

in

Array dims: size of the radii [rMin, rMax]

out

Function: anonymous function.

in

Array divs: a triple of approssimation values [m, n, o]

  • Number m: (12 by default)
  • Number n: (8 by default)
  • Number o: (8 by default)

out

plasm.Model: a solid torus.

Example

torusSolid = TORUS_SOLID([0.1, 0.9])([12,8,8]);
DRAW(torusSolid);

TORUS_SURFACE(dims)(divs)

Create a toroidal surface.

I/O

in

Array dims: size of the radii [rMin, rMax]

out

Function: anonymous function.

in

Array divs: a couple of approssimation values [m, n, o]

  • Number m: slices (12 by default)
  • Number n: stacks (8 by default)

out

plasm.Model: a toroidal surface.

Example

var torusSurface = TORUS_SURFACE([0.1, 0.9])([12,8]);
DRAW(torusSurface);

TRANSLATE(dims)(values)(object) / T(dims)(values)(object)

Clone model and translate cloned model by values on dimensions dims.

I/O

in

Array dims: an array of Number specifying which dimensions translate (first dim has index 0).

out

Function: anonymous function.

in

Array values: an array of Number specifying translation quantity for every dimension in dims.

out

Function: anonymous function.

in

plasm.Model or plasm.Struct object: the object to translate.

out

plasm.Model or plasm.Struct: the translated object.

Example

var cube = CUBE(3);
var translatedCube = T([1,2])([1,3])(cube);
DRAW(translatedCube);

TRIANGULAR_COONS_PATCH(controlcurves)

Create a triangular Coons patch interpolating three control curves

I/O

in

Array curves: an array of three curves

out

instance of plasm.Model: a triangular Coons patch.

Example

var dom1D = INTERVALS(1)(32);
var dom2D = TRIANGLE_DOMAIN(32, [[1,0,0],[0,1,0],[0,0,1]]);

var Cab0 = BEZIER(S0)([[10,0,0],[6,0,3],[3,0,3],[0,0,0]]);
DRAW(MAP(Cab0)(dom1D));

var Cbc0 = BEZIER(S0)([[10,0,0],[10,2,4],[8,8,-4],[2,10,4],[0,10,0]]);
var Cbc1 = BEZIER(S1)([[10,0,0],[10,2,4],[8,8,-4],[2,10,4],[0,10,0]]);
DRAW(MAP(Cbc0)(dom1D));

var Cca0 = BEZIER(S0)([[0,10,0],[0,6,-5],[0,3,5],[0,0,0]]);
DRAW(MAP(Cca0)(dom1D));

var out = MAP(TRIANGULAR_COONS_PATCH([Cab0,Cbc1,Cca0]))(dom2D);
DRAW(out);
DRAW(SKELETON(1)(out));

TRIANGLE_DOMAIN(n, points)

Create a triangle domain using three points as vertices. Every edge is subdivided in n parts.

I/O

in

Number n: number of subdivisions for every edge Array points: an array of points, represented as arrays of coordinates.

out

instance of plasm.Model: a triangle domain.

Example

var domTRI = TRIANGLE_DOMAIN(32, [[1,0,0],[0,1,0],[0,0,1]]);
DRAW(domTRI);
DRAW(SKELETON(1)(domTRI));

TRIANGLE_FAN(points)

Create a tiangle fan: first point is the center of the fan,
center point is used with next two points to form a triangle.
Every successive point is used with center point and the previuos point to form a triangle.

I/O

in

Array points: an array of points, represented as arrays of coordinates.

out

instance of plasm.Model: a triangle fan.

Example

var points = [[0,0,0],[0,1,0],[1,0,0],[0,-1,0],[-1,0,0]];
var triStrip = TRIANGLE_FAN(points);
DRAW(triStrip);

TRIANGLE_STRIP(points)

Create a tiangle strip: first three points made a triangle,
every other point is used with next two points to form a triangle.

I/O

in

Array points: an array of points, represented as arrays of coordinates.

out

instance of plasm.Model: a triangle strip.

Example

var points = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[2,0,0]];
var triStrip = TRIANGLE_STRIP(points);
DRAW(triStrip);