Plasm.js has been created at CVD Lab, Computational Visual Design Laboratory at the university RomaTre, by Enrico Marino and Federico Spini under the supervision and guidance of Alberto Paoluzzi, creator of the original PLaSM.
PLaSM is a functional Programming Language for Symbolic Modeling, based on a dimesion-indipendet geometric kernel.
Copyright (c) 2012 Enrico Marino and Federico Spini for CVD Lab.
BEZIER(sel)(controlpoints)
Transfinite mapping function of genric degree Bezier curve.
in
Function
selector
: domain coordinate selector function.in
Array
v
: point of thedomain
.out
Number
: the selected coordinate.out
Function
: an anonymous function.in
Array
controlpoints
: an array of points and curve mapping functions describing curve control points.out
Function
: an anonymous mapping function.
var domain = INTERVALS(1)(32); var controlpoints = [[-0,0],[1,0],[1,1],[2,1],[3,1]]; var curveMapping = BEZIER(S0)(controlpoints); var curve = MAP(curveMapping)(domain); DRAW(curve);var domain = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]); var c0 = BEZIER(S0)([[0,0,0],[10,0,0]]); var c1 = BEZIER(S0)([[0,2,0],[8,3,0],[9,2,0]]); var c2 = BEZIER(S0)([[0,4,1],[7,5,-1],[8,5,1],[12,4,0]]); var c3 = BEZIER(S0)([[0,6,0],[9,6,3],[10,6,-1]]); var out = MAP(BEZIER(S1)([c0,c1,c2,c3]))(domain); DRAW(out);
BOUNDARY(d)(model)
Get the d
-boundary of the model
.
in
Number
d
: space dimension.out
plasm.Model
: thed
-boundary of themodel
.
var d = 1; var model = TORUS_SURFACE()(); var boundary = BOUNDARY(d)(model); DRAW(boundary);
CANCEL(object)
Remove the object
from the scene graph.
in
plasm.Model
orplasm.Struct
object
: the object to cancel.out
plasm.Model
orplasm.Struct
object
: the cancelled object.
var model = TORUS_SURFACE()(); DRAW(model); CANCEL(model);
CIRCLE(r)(divs)
Create a circle with radius r
, approximated by divs
segments.
in
Number
r
: the radius of the circle.out
Function
: an anonymous function.in
Number
divs
: the number of segments that approximate the circle.out
plasm.Model
: the circle with radiusr
, approximated bydivs
segments.
var r = 1.5; var divs = 32; var circle = CIRCLE(r)(divs); DRAW(circle);
CYLINDRICAL_SURFACE(profile)(vector)
Create a specific ruled surface S called cylindrical where the direction of the lines is given by the vector
with constant components that is non complanar with the section curve (profile
).
The profile
curve can be a known profile function, like BEZIER
, or a custom one.
in
Function
profile
: mappingFunction
of the profile curve.out
Function
: an anonymous function.in
Array
vector
: an array of vector costant components.out
Function
: mapping of the profile of the cylindrical surface.
var domain = PROD1x1([INTERVALS(1)(20),INTERVALS(1)(6)]); var ncpVector = [0,0,1]; var funProfile = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]); var out = MAP(CYLINDRICAL_SURFACE(funProfile)(ncpVector))(domain); DRAW(out);
COLOR(color)(object)
Clone object
and color cloned object with color
.
in
Array
color
: rgba color components (from0
to1
).
Number
r
: red component (from0
to1
,0
by default).Number
g
: green component (from0
to1
,0
by default).Number
b
: blue component (from0
to1
,0
by default).Number
a
: alpha component (from0
to1
,1
by default).out
Function
: an anonymous function.in
plasm.Model
orplasm.Struct
object
: the object to color.out
plasm.Model
orplasm.Struct
: the cloned colored object.
var color = [0.8, 0.4, 0.2, 0.7]; var model = TORUS_SURFACE()(); var coloredModel = COLOR(color)(model); DRAW(coloredModel);
CONICAL_SURFACE(apex)(profile)
Create a conical surface S between a vertex (apex
) and a profile
curve.
The curve can be a known profile function, like BEZIER
, or a custom one.
in
Array
apex
: the cone's vertex (an array of coordinates).out
Function
: an anonymous function.in
Function
profile
: mappingFunction
of the profile curve.out
Function
: mapping of the profile of the conical surface.
var domain = PROD1x1([INTERVALS(1)(20),INTERVALS(1)(6)]); var apex = [0,0,1]; var funProfile = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]); var out = MAP(CONICAL_SURFACE(apex)(funProfile))(domain); DRAW(out);
COONS_PATCH(controlpoints)
Mapping function of a Coons Patch.
in
Array
controlcurves
: an array of curves mapping functions describing surface's boundariesout
Function
: an anonymous mapping function.
var dom1D = INTERVALS(1)(32); var dom2D = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]); var Su0 = BEZIER(S0)([[0,0,0],[10,0,0]]); var curve0 = MAP(Su0)(dom1D); DRAW(curve0); var Su1 = BEZIER(S0)([[0,10,0],[2.5,10,3],[5,10,-3],[7.5,10,3],[10,10,0]]); var curve1 = MAP(Su1)(dom1D); DRAW(curve1); var control2 = [[0,0,0],[0,0,3],[0,10,3],[0,10,0]]; var Sv0 = BEZIER(S1)(control2); var curve2 = MAP(BEZIER(S0)(control2))(dom1D); DRAW(curve2); var control3 = [[10,0,0],[10,5,3],[10,10,0]]; var Sv1 = BEZIER(S1)(control3); var curve3 = MAP( BEZIER(S0)(control3))(dom1D); DRAW(curve3); var out = MAP(COONS_PATCH([Su0,Su1,Sv0,Sv1]))(dom2D); DRAW(out);
CUBE(dim)
Create a dim
-dimensional cube.
in
Number
dim
: dimension of the cube.out
plasm.Model
: a cube withdim
dimension.
var dim = 2; var cube = CUBE(dim); DRAW(cube);
CUBIC_CARDINAL(domain)
Tranfinite Cubic cardinal splines curve generator function on domain
.
in
plasm.Model
domain
: domain of the generator function.out
Function
: an anonymous function.in
Array
controlpoints
: an array of points and curve mapping functions describing curve control points.out
plasm.Model
: a spline segment.
var domain = INTERVALS(1)(20); var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]]; var splineCardinal = SPLINE(CUBIC_CARDINAL(domain))(controlpoints); DRAW(splineCardinal);
CUBIC_HERMITE(selector)(controlpoints)
Transfinite mapping function of cubic Hermite curve.
in
Function
selector
: domain coordinate selector function.in
Array
v
: point of thedomain
.out
Number
: the selected coordinate.out
Function
: an anonymous function.in
Array
controlpoints
: an array of points and curve mapping functions describing curve control points.out
Function
: an anonymous mapping function.
var domain = INTERVALS(1)(20); var controlpoints = [[1,0],[1,1],[ -1, 1],[ 1,0]]; var curveMapping = CUBIC_HERMITE(S0)(controlpoints); var curve = MAP(curveMapping)(domain); DRAW(curve);var domain = PROD1x1([INTERVALS(1)(14),INTERVALS(1)(14)]); var c1 = CUBIC_HERMITE(S0)([[1,0,0],[0,1,0],[0,3,0],[-3,0,0]]); var c2 = CUBIC_HERMITE(S0)([[0.5,0,0],[0,0.5,0],[0,1,0],[-1,0,0]]); var sur3 = CUBIC_HERMITE(S1)([c1,c2,[1,1,1],[-1,-1,-1]]); var out = MAP(sur3)(domain); DRAW(out);
CUBIC_UBSPLINE(domain)
Tranfinite cubic uniform B-splines curve generator function on domain
.
in
plasm.Model
domain
: domain of the generator function.out
Function
: an anonymous function.in
Array
controlpoints
: an array of points and curve mapping functions describing curve control points.out
plasm.Model
: a spline segment.
var domain = INTERVALS(1)(20); var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]]; var splineCubic = SPLINE(CUBIC_UBSPLINE(domain))(controlpoints); DRAW(splineCubic);
CUBOID(dims)
Create a cuboidal simplicial complex with dimensions [dx, dy, dz, ...]
.
in
Array
dims
: sides length for each dimension of the simplicial complex.
Number
dx
: dimension along x axeNumber
dy
: dimension along y axeNumber
dz
: dimension along z axe- ...
out
plasm.Model
: a cuboidal simplicial complex with dimensions[dx, dy, dz, ...]
.
var dx = 1; var dy = 2; var dz = 3; var cuboid1 = CUBOID([dx]); DRAW(cuboid1);var cuboid2 = CUBOID([dx, dy]); DRAW(cuboid2);var cuboid3 = CUBOID([dx, dy, dz]); DRAW(cuboid3);
CYL_SURFACE(dims)(divs)
Create a cylindrical surface.
in
Array
dims
: dimensions[r, h]
.
Number
r
: the radius (1
by default).Number
h
: the height (1
by default).out
Function
: an anonymous function.in
Array
divs
: divisions[slices, stacks]
.
Number
slices
: slices (16
by default).Number
stacks
: stacks (2
by default).out
plasm.Model
: a cylindrical surface with radiusr
and heighth
, divided inslices
andstacks
.
var model = CYLSURFACE()(); DRAW(model);
DISK(r)(divs)
Create a disk surface with radius r
.
in
Number
r
: the radius (1
by default).out
Function
: an anonymous function.in
Array
divs
: divisions[slices, stacks]
.
Number
slices
: slices (16
by default).Number
stacks
: stacks (2
by default).out
plasm.Model
: a disk with radiusr
, divided inslices
andstacks
.
var model = DISK()(); DRAW(model);
DOMAIN(dims)(divs)
Create a domain.
in
Array
dims
: dimensions[dx, dy, dz, ...]
.
Array
dx
: intervals[start_x, end_x]
Number
start_x
: x minNumber
end_x
: x maxArray
dy
: intervals[start_y, end_y]
Number
start_y
: y minNumber
end_y
: y maxArray
dz
: intervals[start_z, end_z]
Number
start_z
: z minNumber
end_z
: z max- ...
out
Function
: an anonymous function.in
Array
divs
: divisions[nx, ny, nz, ...]
.
Number
nx
: division along x axes.Number
ny
: division along y axes.Number
nz
: division along z axes.- ...
out
plasm.Model
: a domain.
var domain1 = DOMAIN([[0,PI])([32]); DRAW(domain1);var domain2 = DOMAIN([[0,PI], [0,1]])([32, 2]); DRAW(domain2);var domain3 = DOMAIN([[0,PI], [0,1], [0,0.5]])([32, 2, 5]); DRAW(domain3);
DRAW(object)
Draw an object of 3 or less dimensions.
in
plasm.Model
orplasm.Struct
object
: the object to draw.out
plasm.Model
orplasm.Struct
object
: the object drawn.
EXPLODE(values)(model)
Explode a model
.
in
Array
values
:[dx, dy, dz, ...]
Number
dx
: explosion factor along x axeNumber
dy
: explosion factor along y axeNumber
dx
: explosion factor along z axe- ...
out
Function
: an anonimous function.in
plasm.Model
model
: the model to explode.out
plasm.Model
: the model exploded.
var model = TORUS_SURFACE()(); var exploded = EXLODE([2,2,2])(model); DRAW(exploded);
EXTRUDE(hlist)(object)
Extrude an object
.
in
Array
hlist
out
Function
: an anonimous function.in
plasm.Model
orplasm.Struct
objetc
: the object to extrude.out
plasm.Model
orplasm.Struct
objetc
: the extruded object.
var model = SIMPLEX(1); var extruded = EXTRUDE([1])(model); DRAW(extruded);
HIDE(object)
Hide the object
.
in
plasm.Model
orplasm.Struct
objetc
: the object to hide.out
plasm.Model
orplasm.Struct
: the hidden model.
var model = TORUS_SURFACE()(); DRAW(model); HIDE(model);
INTERVALS(length)(n)
Create a segment from 0
to length
divided in n
parts.
in
Number
length
: the length of the interval.out
Function
: an anonimous function.in
Number
n
: the number of divisions.out
plasm.Model
: a segment from0
tolength
divided inn
parts.
var intervals = INTERVALS(10)(5); DRAW(intervals);
K(data)(anydata)
Return object
when invoked on anyObject
.
in
Object
data
: anyObject
out
Function
: an anonymous function.in
Object
anydata
: anyObject
that will be discardedout
Function
: an anonymous function.
var kContent = 5; var identityCall = K(kContent); var newCall = identityCall("plasm"); console.log(kContent === newCall);
MAP(mapping)(domain)
Map a domain
by a mapping
function.
in
Function|Array
mapping
: the mapping function (or array of function)in
Array
v
: point of thedomain
.out
Array
: the mapped point.out
Function
: an anonymous function.in
plasm.Model
domain
: the domain to map.out
plasm.Model
: the mapped domain.
var mapping = function (v) { return [v[0] + 1, v[1], v[2]]; var model = TORUS_SURFACE()(); var mapped = MAP(mapping)(model); DRAW(mapped);var domain = DOMAIN([[0,1]],[0,2*PI]); var mapping = function (v) { return [SIN(v[0]), COS(v[1])]; }); var model = MAP(mapping)(domain); DRAW(model);var domain = DOMAIN([[0,1]],[0,2*PI]); var mapping = [ function (v) { return SIN(v[0]); }, function (v) { return COS(v[1]); } ]); var model = MAP(mapping)(domain) DRAW(model);
NUBSLINE(degree)(knots)(controls)
Non-uniform B-Spline.
in
Number
degree
: spline degree.Number
[totpoints=80]
: total number of spline's points.out
Function
: an anonymous function.in
Array
knots
: Array of integer describing spline's knots.out
Function
: an anonymous function.in
Array
controls
: Array of integer describing spline's control points.out
plasm.Model
: non uniform spline.
var controls = [[0,0],[-1,2],[1,4],[2,3],[1,1],[1,2],[2.5,1],[2.5,3],[4,4],[5,0]]; var knots = [0,0,0,0,1,2,3,4,5,6,7,7,7,7]; var nubspline = NUBSPLINE(3)(knots)(controls); DRAW(nubspline);
NUBS(sel)(degree)(knots)(controls)
Transfinite Non-uniform B-Spline.
in
Function
sel
: selctor function.out
Function
: an anonymous function.in
Number
degree
: spline degree.out
Function
: an anonymous function.in
Array
knots
: Array of integer describing spline's knots.out
Function
: an anonymous function.in
Array
controls
: Array of integer describing spline's control points.out
plasm.Model
: non uniform spline.
var domain = INTERVALS(1)(20); var controls = [[0,0],[-1,2],[1,4],[2,3],[1,1],[1,2],[2.5,1],[2.5,3],[4,4],[5,0]]; var nubs = NUBS(S0)(3)([0,0,0,0,1,2,3,4,5,6,7,7,7,7])(controls); var model = MAP(nubs)(domain); DRAW(model);var domain = DOMAIN([[0,1],[0,1]])([30,30]); var b0 = BEZIER(S0)([[0,0,0],[5,-10,0],[10,0,0]]); var b1 = BEZIER(S0)([[0,2,0],[8,3,0],[9,2,0]]); var b2 = BEZIER(S0)([[0,4,1],[7,5,-1],[8,5,1],[12,4,0]]); var b3 = BEZIER(S0)([[0,6,0],[9,6,3],[10,6,-1]]); var controls = [b0,b1,b2,b3]; var nubs = NUBS(S1)(3)([0,0,0,0,7,7,7,7])(controls); var model = MAP(nubs)(domain); DRAW(model);
NURBSLINE(degree)(knots)(controls)
Non-uniform Rational B-Spline.
in
Number
degree
: spline degree.Number
[totpoints=80]
: total number of spline's points.out
Function
: an anonymous function.in
Array
knots
: Array of integer describing spline's knots.out
Function
: an anonymous function.in
Array
controls
: Array of integer describing spline's control points.out
plasm.Model
: non uniform rational spline.
var _p = Math.sqrt(2)/2.0; var controls = [[-1,0,1], [-_p,_p,_p], [0,1,1], [_p,_p,_p],[1,0,1], [_p,-_p,_p], [0,-1,1], [-_p,-_p,_p], [-1,0,1]]; var knots = [0,0,0,1,1,2,2,3,3,4,4,4]; var nurbs = NURBSPLINE(2)(knots)(controls); DRAW(nurbs);
POLYLINE(points)
Create a polyline made by points
.
in
Array
points
: an array of points ([p0, p1, ...]
):
Array
points[i]
point
:i
-th point
Number
point[k]
:k
-th coord ofpoint
out
plasm.Model
: a polyline made bypoints
.
var points = [[0,0], [1,1], [2,0]]; var polyline = POLYLINE(points); DRAW(polyline);
POLYPOINT(points)
Create a 0D complex.
in
Array
points
: an array of points ([p0, p1, ...]
):
Array
points[i]
point
:i
-th point
Number
point[k]
:k
-th coord ofpoint
out
plasm.Model
: a polypoint made bypoints
.
var points = [[0,0], [1,1], [2,0]]; var polypoint = POLYPOINT(points); DRAW(polypoint);
PROD1x1(array)
Return cartesian product of the two models in array
.
Each model must have Rn equals to 1.
in
Array
array
: an array of the two operand models ([model1, model2]
):
Array
array[0]
model1
: the first operand modelArray
array[1]
model2
: the second operand modelout
plasm.Model
: result of the product of the two models
var a = POLYLINE([[1],[3],[4]]); var b = POLYLINE([[2.2],[3.5],[7.8],[9.0]]); var axb = PROD1x1([a,b]); DRAW(STRUCT([axb, SKELETON(1)(axb)]));
PROD1x2(array)
Return cartesian product of the two models in array
.
The first model must have Rn equals to 1.
The second model must have Rn equals to 2.
in
Array
array
: an array of the two operand models ([model1, model2]
):
Array
array[0]
model1
: the first operand modelArray
array[1]
model2
: the second operand modelout
plasm.Model
: result of the product of the two models
var a = POLYLINE([[1],[3],[4]]); var b = POLYLINE([[0,2],[1,1],[2,1],[3,0]]); var axb = PROD1x2([a,b]); DRAW(STRUCT([axb, SKELETON(1)(axb)]));
PROD2x1(array)
Return cartesian product of the two models in array
.
The first model must have Rn equals to 2.
The second model must have Rn equals to 1.
in
Array
array
: an array of the two operand models ([model1, model2]
):
Array
array[0]
model1
: the first operand modelArray
array[1]
model2
: the second operand modelout
plasm.Model
: result of the product of the two models
var a = POLYLINE([[1],[3],[4]]); var b = POLYLINE([[0,2],[1,1],[2,1],[3,0]]); var bxa = PROD2x1([b,a]); DRAW(STRUCT([bxa, SKELETON(1)(bxa)]));
PROFILEPROD_SURFACE(profiles)
Create a surface S mapping as profile product between two plane curves A and B (in profiles
)
in
Array
profiles
: mappingFunction
of the two plane curves profile to product.out
Function
: mapping of the profile product surface
var dom1D = INTERVALS(1)(32); var Su0 = BEZIER(S0)([[0,0,0],[2,0,0],[0,0,4],[1,0,5]]); var curve0 = MAP(Su0)(dom1D); DRAW(COLOR([0,0,1])(curve0)); var Su1 = BEZIER(S1)([[0,0,0],[3,-0.5,0],[3,3.5,0],[0,3,0]]); var Su1Draw = BEZIER(S0)([[0,0,0],[3,-0.5,0],[3,3.5,0],[0,3,0]]); var curve1 = MAP(Su1Draw)(dom1D); DRAW(COLOR([1,0,1])(curve1)); var dom2D = PROD1x1([INTERVALS(1)(16),INTERVALS(1)(16)]); // DOMAIN([[0,1],[0,1]])([20,20]); var out = MAP(PROFILEPROD_SURFACE([Su0,Su1]))(dom2D); DRAW(out);
ROTATE(dims)(angle)(object)
/ R(dims)(angle)(object)
Rotate object
by angle
on the rotational plane described by dims
.
in
Array
dims
: an array ofNumber
specifying dimensions forming the rotational plane on which rotate the object.
Array
dims[0]
dims1
: the first dimension of the rotational plane.Array
dims[1]
dims2
: the second dimension of the rotational plane.out
Funciton
: an anonymous function.in
Number
angle
: rotational angle (in radiant, from0
to2Ď€
).out
Function
: an anonymous function.in
plasm.Model
orplasm.Struct
object
: the object to rotate.out
plasm.Model
orplasm.Struct
: the rotated object.
var model = TORUS_SURFACE()(); var rotated = ROTATE([0,1])(PI/3)(model); DRAW(rotated);
ROTATIONAL_SURFACE(profile)
Create a rotational surface mapping given the mapping of the profile to rotate.
in
Function
profile
: mapping of the profile to rotate.out
Function
: mapping of the rotational surface
var domain = DOMAIN([[0,1],[0,2*PI]])([20,20]); var profile = BEZIER(S0)([[0,0,0],[3,0,3],[3,0,5],[0,0,7]]); var mapping = ROTATIONAL_SURFACE(profile); var surface = MAP(mapping)(domain);
RULED_SURFACE(profiles)
Create a ruled surface S mapping between two profile curves A and B (in profiles
).
The curves can either be a known profile function, like BEZIER
, or a custom one (see examples).
in
Array
functions
: mappingFunction
of the two curves.out
Function
: mapping of the profile ruled surface
// Hyperbolic paraboloid var dom2D = T([0,1])([-1,-1])( PROD1x1([INTERVALS(2)(10),INTERVALS(2)(10)]) ); var funAlfa = function(pt) { return [ pt[0], pt[0], 0 ]; }; var funBeta = function(pt) { return [ 1, -1, pt[0] ]; }; var out = MAP(RULED_SURFACE([funAlfa,funBeta]))(dom2D); DRAW(out);// Linear interpolation of curves: surface connecting a BĂ©zier curve and a portion of a circle var dom2D = PROD1x1([INTERVALS(1)(50),INTERVALS(1)(50)]); var funAlfa = BEZIER(S0)([[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0]]); var funBeta = function(curveFun) { return function(pt) { var pAlfa = curveFun(pt); return [ COS( PI * (3/2) * pt[0] ) - pAlfa[0], SIN( PI * (3/2) * pt[0] ) - pAlfa[1], 1 - pAlfa[2] ]; }; }; var out = MAP(RULED_SURFACE([funAlfa,funBeta(funAlfa)]))(dom2D); DRAW(out);
SCALE(axis)(values)(object)
/ S(axis)(values)(object)
Scale model
by values
along axis
.
in
Array
axis
: axis to scale along.out
Function
: an anonymous function.in
Array
values
: scaling factors.out
Function
: an anonymous function.in
plasm.Model
orplasm.Struct
object
: the object to scale.out
plasm.Model
orplasm.Struct
: the scaled object.
var model = TORUS_SURFACE()(); var scaled = SCALE([1,2])([2,0.5])(model); DRAW(scaled);
SHOW(object)
Show a hidden object
.
in
plasm.Model
orplasm.Struct
object
: the object to show.out
plasm.Model
orplasm.Struct
: the shown model.
var model = TORUS_SURFACE()(); DRAW(model); HIDE(model); SHOW(model);
SIMPLEX(dim)
Create a dim
-dimensional simplex with sides length equal to 1.
in
Number
dim
: simplex dimension.out
plasm.Model
: a simplex of dimdim
.
var simplex = SIMPLEX(3); DRAW(simplex);
SIMPLEX_GRID(quotes)
Create a grid simplicial complex.
in
Array
quotes
: an array of array of quotes for each dimension of the grid, starting from dimension 0.
Quotes may be both positive and negative:
- positive ones are actually generated,
- negative ones are considered as a positive spacing.
out
plasm.Model
: a grid simplicial complex.
var model = SIMPLEX_GRID([1,-1,1]); DRAW(model);
SIMPLICIAL_COMPLEX(points)(cells)
Create a simplicial complex.
in
Array
points
: an array of points, represented as arrays of coordinates.out
Function
: anonymous function.in
Array
cells
: complex's highest order cells represented as arrays of indices ofpoints
.out
plasm.Model
: a simplicial complex.var points = [[0,0],[1,0],[0,1],[1,1],[0.5,1.5]]; var cells = [[0,1,2],[1,3,2],[2,3,4]]; var simplicialComplex = SIMPLICIAL_COMPLEX(points)(cells); DRAW(simplicialComplex);
SKELETON(dim)(model)
Extract the dim
-skeleton of the model
.
in
Number
dim
: dimension of the skeleton.out
Function
: anonymous function.in
plasm.Model
model
: model to which extract skeleton.out
plasm.Model
:dim
-skeleton of themodel
.
var cuboid = CUBOID([1,2,3]); var skeleton1 = SKELETON(1)(cuboid); DRAW(skeleton1);
SPLINE(curve)(controlpoints)
Create spline curve.
in
Function
curve
: spline curve generator function, such as the result of application ofCUBIC_UBSPLINE
orCUBIC_CARDINAL
to a domain.out
Function
: an anonymous function.in
Array
controlpoints
: an array of points and curve mapping functions describing curve control points.out
plasm.Struct
: the spline.
var domain = INTERVALS(1)(20); var controlpoints = [[-3,6],[-4,2],[-3,-1],[-1,1],[1.5,1.5],[3,4],[5,5],[7,2],[6,-2],[2,-3]]; var splineCardinal = COLOR([1,0,0])(SPLINE(CUBIC_CARDINAL(domain))(controlpoints)); var splineCubic = COLOR([0,1,0])(SPLINE(CUBIC_UBSPLINE(domain))(controlpoints)); var points = SIMPLICIAL_COMPLEX(controlpoints)([[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]]); var out = STRUCT([splineCardinal,splineCubic,points]); DRAW(out);
STRUCT(items)
Structure together plasm.Model
and plasm.Struct
.
If a transformation is encountered in items
,
it is applied to all of the following items.
in
Array
items
: an array ofplasm.Model
orplasm.Struct
orFunction
out
instance of
plasm.Struct
: a struct.
var cube1 = CUBE(3); var cube2 = T([0])([1.3])(cube1); var struct1 = STRUCT([cube1, cube2]); var t = T([1])([1.3]); var struct = STRUCT([struct1, t, struct1, t, cube1]);
TORUS_SOLID(dims)(divs)
Create a torus solid.
in
Array
dims
: size of the radii[rMin, rMax]
Number
rMin
: internal radius (0.1
by default)Number
rMax
: external radius (0.9
by default)out
Function
: anonymous function.in
Array
divs
: a triple of approssimation values[m, n, o]
Number
m
: (12
by default)Number
n
: (8
by default)Number
o
: (8
by default)out
plasm.Model
: a solid torus.
torusSolid = TORUS_SOLID([0.1, 0.9])([12,8,8]); DRAW(torusSolid);
TORUS_SURFACE(dims)(divs)
Create a toroidal surface.
in
Array
dims
: size of the radii[rMin, rMax]
Number
rMin
: internal radius (0.1
by default)Number
rMax
: external radius (0.9
by default)out
Function
: anonymous function.in
Array
divs
: a couple of approssimation values[m, n, o]
Number
m
: slices (12
by default)Number
n
: stacks (8
by default)out
plasm.Model
: a toroidal surface.
var torusSurface = TORUS_SURFACE([0.1, 0.9])([12,8]); DRAW(torusSurface);
TRANSLATE(dims)(values)(object)
/ T(dims)(values)(object)
Clone model
and translate cloned model by values
on dimensions dims
.
in
Array
dims
: an array ofNumber
specifying which dimensions translate (first dim has index 0).out
Function
: anonymous function.in
Array
values
: an array ofNumber
specifying translation quantity for every dimension indims
.out
Function
: anonymous function.in
plasm.Model
orplasm.Struct
object
: the object to translate.out
plasm.Model
orplasm.Struct
: the translated object.
var cube = CUBE(3); var translatedCube = T([1,2])([1,3])(cube); DRAW(translatedCube);
TRIANGULAR_COONS_PATCH(controlcurves)
Create a triangular Coons patch interpolating three control curves
in
Array
curves
: an array of three curvesout
instance of
plasm.Model
: a triangular Coons patch.
var dom1D = INTERVALS(1)(32); var dom2D = TRIANGLE_DOMAIN(32, [[1,0,0],[0,1,0],[0,0,1]]); var Cab0 = BEZIER(S0)([[10,0,0],[6,0,3],[3,0,3],[0,0,0]]); DRAW(MAP(Cab0)(dom1D)); var Cbc0 = BEZIER(S0)([[10,0,0],[10,2,4],[8,8,-4],[2,10,4],[0,10,0]]); var Cbc1 = BEZIER(S1)([[10,0,0],[10,2,4],[8,8,-4],[2,10,4],[0,10,0]]); DRAW(MAP(Cbc0)(dom1D)); var Cca0 = BEZIER(S0)([[0,10,0],[0,6,-5],[0,3,5],[0,0,0]]); DRAW(MAP(Cca0)(dom1D)); var out = MAP(TRIANGULAR_COONS_PATCH([Cab0,Cbc1,Cca0]))(dom2D); DRAW(out); DRAW(SKELETON(1)(out));
TRIANGLE_DOMAIN(n, points)
Create a triangle domain using three points as vertices. Every edge is subdivided in n parts.
in
Number
n
: number of subdivisions for every edgeArray
points
: an array of points, represented as arrays of coordinates.out
instance of
plasm.Model
: a triangle domain.
var domTRI = TRIANGLE_DOMAIN(32, [[1,0,0],[0,1,0],[0,0,1]]); DRAW(domTRI); DRAW(SKELETON(1)(domTRI));
TRIANGLE_FAN(points)
Create a tiangle fan: first point is the center of the fan,
center point is used with next two points to form a triangle.
Every successive point is used with center point and the previuos point to form a triangle.
in
Array
points
: an array of points, represented as arrays of coordinates.out
instance of
plasm.Model
: a triangle fan.
var points = [[0,0,0],[0,1,0],[1,0,0],[0,-1,0],[-1,0,0]]; var triStrip = TRIANGLE_FAN(points); DRAW(triStrip);
TRIANGLE_STRIP(points)
Create a tiangle strip: first three points made a triangle,
every other point is used with next two points to form a triangle.
in
Array
points
: an array of points, represented as arrays of coordinates.out
instance of
plasm.Model
: a triangle strip.
var points = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[2,0,0]]; var triStrip = TRIANGLE_STRIP(points); DRAW(triStrip);